
J Math Chem (2013) 51:532–555
DOI 10.1007/s10910-012-0102-y

ORIGINAL PAPER

High order four-step hybrid method with vanished
phase-lag and its derivatives for the approximate
solution of the Schrödinger equation

Ibraheem Alolyan · T. E. Simos

Received: 24 September 2012 / Accepted: 29 September 2012 / Published online: 13 October 2012
© Springer Science+Business Media New York 2012
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1 Introduction

In this paper, we study the numerical solution of the one-dimensional time indepen-
dent Schrödinger equation which can written as a boundary value problem with the
following form:

q ′′(r) = [l(l + 1)
/

r2 + V (r) − k2
]

q(r). (1)

In applied sciences, there are many scientific areas for which the mathematical
models of their problems can be written with the above mentioned boundary value
problem. Some scientific areas are:

– astronomy,
– astrophysics,
– quantum mechanics,
– quantum chemistry,
– celestial mechanics,
– electronics
– physical chemistry
– chemical physics etc

(see for example [1–4])
For the above model (1), we give the following definitions:

1. The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential. This
satisfies W (x) → 0 as x → ∞,

2. The quantity k2 is a real number denoting the energy,
3. The quantity l is a given integer representing the angular momentum,
4. V is a given function which denotes the potential.

The boundary conditions are:

q(0) = 0 (2)

and a second boundary condition, for large values of r , determined by physical con-
siderations.

In the last decades, much research has been done on the construction of efficient, fast
and reliable algorithms for the approximate solution of the radial Schrödinger equation
and related problems (see for example [5–105]). In the following, we mention some
bibliography:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge-
Kutta and Runge-Kutta Nyström type have been obtained in [5–11].

– In [12–17] exponentially and trigonometrically fitted Runge-Kutta and Runge-
Kutta Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [23–50].

– Symplectic integrators are investigated in [51–77].
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– Exponentially and trigonometrically multistep methods have been produced in
[78–98].

– Nonlinear methods have been studied in [99] and [100]
– Review papers have been presented in [101–105]
– Special issues and Symposia in International Conferences have been developed on

this subject (see [106–112])

In this paper, we study a two-stage four-step hybrid sixth algebraic order method.
More specifically, we study the effect of the vanishing of the phase-lag and its first
and second derivatives on the efficiency of the obtained numerical scheme.

It is noted that the produced methods via the above procedure, are very effective
on any problem with:

– periodic or
– oscillating solutions or
– solution which contains the functions cos and sin or
– solution that is a combination of the functions cos and sin.

More specifically, the aim of this paper is the calculation of the coefficients of the
introduced hybrid two-stage four-step method in order to have:

– the the highest possible algebraic order
– the phase-lag vanished
– the first derivative of the phase-lag vanished as well
– the second derivative of the phase-lag vanished as well

The direct formula for the determination of the phase-lag for 2m-method (see [29]
and [26]) is used for the computation of the phase-lag and its first and second deriva-
tives.

The investigation of the effectiveness of the new obtained scheme will be based on

– the investigation of the local truncation error of the new produced method and
– the study of the stability analysis of the new obtained method.
– the application of the new developed method to the resonance problem of the radial

time independent Schrödinger equation. This is one of the most difficult problems
arising from the radial Schrödinger equation.

The format of the paper is given below:

– The phase-lag analysis of symmetric 2k-methods is developed in Sect. 2
– In Sect. 3, we obtain the new hybrid two-stage four-step method.
– The error analysis is presented in Sect. 4.
– In Sect. 5, the stability properties of the new produced method are studied.
– In Sect. 6, the numerical results are presented.
– Finally, in Sect. 7, remarks and conclusions are mentioned.

2 Phase-lag analysis of symmetric multistep methods

For the numerical solution of the initial value problem

q ′′ = f (x, q), (3)
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we consider a multistep method with k steps which can be used over the equally spaced
intervals {xi }k

i=0 ∈ [a, b] and h = |xi+1 − xi |, i = 0(1)k − 1.
If the method is symmetric, then ai = ak−i and bi = bk−i , i = 0(1) k

2 .
When a symmetric 2k-step method, that is for i = −k(1)k, is applied to the scalar

test equation

q ′′ = −ω2 q (4)

a difference equation of the form

Ak(v) qn+k + · · · + A1(v) qn+1 + A0(v) qn + A1(v) qn−1 + · · · + Ak(v) qn−k = 0

(5)

is obtained, where v = ω h, h is the step length and A0(v), A1(v), . . ., Ak(v) are
polynomials of v = ω h.

The characteristic equation associated with (5) is given by:

Ak(v) λk + · · · + A1(v) λ + A0(v) + A1(v) λ−1 + · · · + Ak(v) λ−k = 0 (6)

Theorem 1 [26] and [29] The symmetric 2k-step method with characteristic equation
given by (6) has phase-lag order q and phase-lag constant c given by:

−c vq+2 + O
(
vq+4

)

= 2 Ak (v) cos (k v) + · · · + 2 A j (v) cos ( j v) + · · · + A0 (v)

2 k2 Ak (v) + · · · + 2 j2 A j (v) + · · · + 2 A1 (v)
(7)

The formula mentioned in the above theorem is a direct method for the computation
of the phase-lag of any symmetric 2k- step method.

3 Development of the new method

Let us consider the following family of hybrid (Runge-Kutta type) symmetric four-step
methods for the numerical solution of problems of the form q ′′ = f (x, q) :

q̂n+2 = 2 qn+1 − 2 qn + 2 qn−1 − qn−2 + h2

6

(
7 fn+1 − 2 fn + 7 yn−1

)

qn+2 − 2 qn+1 + 2 qn − 2 qn−1 + qn−2

= h2
[

b0

(
f̂n+2 + fn−2

)
+ b1 ( fn+1 + fn−1) + b2 fn

]
(8)

In the above general form :

1. the coefficient b0, b1, b2 are free parameters,
2. h is the step size of the integration ,
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3. n is the number of steps,
4. qn is the approximation of the solution on the point xn

5. fn = f (xn, qn)

6. xn = x0 + n h and
7. x0 is the initial value point.

Application of the method (8) to the scalar test equation (4) leads to the difference
equation (5) with k = 1 and A j (v) , j = 0, 1 given by:

A2 (v) = 1, A1 (v) = −2 + v2
(

b0

(
2 − 7/6 v2

)
+ b1

)

A0 (v) = 2 − 2 b0v
2 + 1

/
3 v4b0 + v2b2 (9)

We require the above mentioned method to have the phase-lag and its first and
second derivatives vanished. Using the formulae (7) (for k = 1) and (9), the following
equation is obtained:

Phase − Lag = − S0

D0
= 0 (10)

where

S0 = 12 (cos (v))2 − 12 cos (v) + 12 cos (v) b0v
2 − 7 cos (v) v4b0

+6 cos (v) v2b1 − 6 b0v
2 + v4b0 + 3 v2b2

D0 = −12 − 12 b0v
2 + 7 v4b0 − 6 v2b1

Requiring now the method to have the first derivative of the phase-lag vanished as
well, the following equation is obtained:

First Derivative of the Phase − Lag = S1

D2
0

= 0 (11)

where

S1 = 84 sin (v) v6b0b1 − 288 cos (v) sin (v) b0v
2 + 168 cos (v) sin (v) v4b0

−144 cos (v) sin (v) v2b1 − 144 sin (v) b0v
4b1 − 144 b0v + 48 v3b0

+72 v b2−288 sin (v) cos (v)−60 b0
2v5 + 576 cos (v) b0v−672 cos (v) v3b0

+288 cos (v) v b1 − 144 sin (v) b0
2v4 + 168 sin (v) b0

2v6 − 49 sin (v) v8b0
2

−36 sin (v) v4b1
2 + 12 v5b0b1 + 42 v5b2b0 − 288 v (cos (v))2 b0

+336 (cos (v))2 b0v
3 − 144 v (cos (v))2 b1 + 144 sin (v)

Finally, demanding for the new obtained method the second derivative of the phase-
lag to be vanished as well, the following equation is obtained:

Second Derivative of the Phase − Lag = S2

D3
0

= 0 (12)
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where

S2 = −3456 − 8064 (cos (v))2 v4b0 − 252 b0
2v8b1

+216 v6b0
2b1 − 72 b0v

6b1
2 − 504 b2v

6b0
2 − 882 b2v

8b0
2

+6912 (cos (v))2 v2b1 + 25056 (cos (v))2 b0
2v4 − 19824 (cos (v))2 v6b0

2

+2352 (cos (v))2 v8b0
2 + 1728 (cos (v))2 v4b1

2 + 588 cos (v) v8b0
2

−3024 cos (v) b0
3v8 + 432 cos (v) v4b1

2+1728 cos (v) b0
3v6 + 13824 sin (v) b0

2v3

+3456 (cos (v))2 b0 − 8640 b0v
2 + 4032 v4b0 − 3456 v2b1 − 6912 cos (v) b0

+1728 b0 + 6912 (cos (v))2 + 1764 cos (v) b0
3v10 − 24192 sin (v) b0

2v5

−343 cos (v) v12b0
3 + 216 cos (v) v6b1

3 + 9408 sin (v) v7b0
2 + 3456 sin (v) v3b1

2

−10368 (cos (v))2 b0
2v2 + 1728 (cos (v))2 b0v

2 − 2592 v2 (cos (v))2 b1
2

+20736 cos (v) b0
2v2 + 24192 cos (v) sin (v) b0

2v5 − 9408 cos (v) sin (v) b0
2v7

−13824 cos (v) sin (v) b0
2v3 − 3456 cos (v) sin (v) b1

2v3 − 34560 cos (v) b0
2v4

+21504 cos (v) v6b0
2 + 5184 cos (v) v2b1

2 + 16128 cos (v) sin (v) b0v
3

−13824 v cos (v) sin (v) b0 − 6912 v cos (v) sin (v) b1 − 10368 (cos (v))2 b0v
2b1

−16416 cos (v) v4b0b1 + 20736 cos (v) b0v
2b1 + 15984 (cos (v))2 v4b0b1

−4032 (cos (v))2 v6b0b1 + 1008 cos (v) v4b0 + 22464 cos (v) b0v
2

−1008 cos (v) v6b0b1 + 2592 cos (v) b0
2v6b1 − 3024 cos (v) b0

2v8b1

+1296 cos (v) b0v
6b1

2 + 13824 sin (v) b0v
3b1 + 882 cos (v) v10b0

2b1

−756 cos (v) v8b0b1
2 − 16128 sin (v) b0v

3 − 5184 b0
2v2 + 7776 b0

2v4

−12096 sin (v) v5b0b1−864 cos (v) v2b1−2592 b0v
2b1+12096 cos (v) sin (v) b0v

5b1

−13824 cos (v) sin (v) b0v
3b1 − 3888 v4b0b1 + 2592 v2b2b0

−6048 v4b2b0 + 1296 v2b2b1 − 3456 cos (v) b1 − 864 v4b1
2

+13824 sin (v) b0v + 6912 sin (v) vb1 − 252 b2v
6b0b1 + 2016 v6b0b1

−864 b2 − 1728 cos (v) + 720 v6b0
3 + 1260 v8b0

3 + 1728 (cos (v))2 b1

+2352 v6b0
2 − 1176 b0

2v8

We demand now the coefficients of the new proposed method to satisfy the Eqs. (10–
12). Therefore, the following coefficients of the new developed method are obtained:

b0 = S3

D1
, b1 = S4

D1
, b2 = S5

D1
(13)

where:

S3 = −6 v2 sin (3 v) + 18 sin (v) v2 + 42 cos (v) v − 18 v cos (3 v) − 36 v

+12 v cos (2 v) + 18 sin (3 v) + 18 sin (v) − 36 sin (2 v)

S4 = −36 sin (v) + 200 v−284 cos (v) v − 77 sin (v) v2 − 84 v3 + 109 cos (v) v3

−36 sin (3 v) + 72 sin (2 v) − 20 v cos (3 v) + 104 v cos (2 v) − 7 v4 sin (3 v)

+21 v4 sin (v) + 20 v3 cos (2 v)−9 v2 sin (3 v)−21 v3 cos (3 v)−8 v2 sin (2 v)
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S5 = 128 v + 36 sin (v) − 9 v3 − 300 cos (v) v + 12 sin (v) v2 − 12 cos (v) v3

−36 v2 sin (3 v)−164 v cos (3 v)+280 v cos (2 v) + 36 sin (3 v)−6 v4 sin (v)

+2 v4 sin (3 v) − 32 v3 cos (2 v) + 12 v3 cos (3 v) + 98 v2 sin (2 v)

−7 v3 cos (4 v) + 35 v2 sin (4 v) + 56 v cos (4 v) − 72 sin (2 v)

D1 = −21 v5 + 7 v5 cos (2 v) + 2 v5 cos (v) − 2 v4 sin (v) + 7 v4 sin (2 v)

For some values of |ω| the formulae given by (13) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

b0 = 3

40
− 751

100800
v2 + 769

4032000
v4 − 28543

111767040000
v6

+ 91697083

174356582400000
v8 + 590544631

11266117632000000
v10

+ 1243181826013

298777439600640000000
v12

+ 4000700646135199

17484455765429452800000000
v14

+ 20035252700556811

6294404075554603008000000000
v16 + · · ·

b1 = 13

15
+ 751

25200
v2 − 8279

1008000
v4 + 3086213

27941760000
v6

− 322337753

43589145600000
v8 + 7747502327

36614882304000000
v10

+ 4147625909617

74694359900160000000
v12

+ 10188357732421097

1457037980452454400000000
v14

+ 987246637890099799

1573601018888650752000000000
v16 + · · · (14)

b2 = 7

60
− 751

16800
v2 + 4621

288000
v4 − 151101109

55883520000
v6

+ 12217462729

87178291200000
v8 − 54378448079

8136640512000000
v10

+ 25139050848319

149388719800320000000
v12

+ 40778649070486037

8742227882714726400000000
v14

+ 195605063295660329

185129531633958912000000000
v16 + · · ·

The behavior of the coefficients is given in the following Fig. 1.
The local truncation error of the new proposed method (mentioned as NewMeth)

is given by:
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Fig. 1 Behavior of the coefficients of the new proposed method given by (13) for several values of v = ω h

LT ENewMeth = − 751 h8

302400

(
q(8)

n + 3 ω2 q(6)
n + 3 ω4 q(4)

n + ω6 q(2)
n

)
+ O

(
h10

)

(15)

4 Comparative error analysis

We will study the following methods:

4.1 Classical method (i.e. the method (8) with constant coefficients)

LT EC L = − 751 h8

302400
q(8)

n + O
(

h10
)

(16)
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4.2 The new proposed method with vanished phase-lag and its first and second
derivatives

LT ENewMeth = − 751 h8

302400

(
q(8)

n + 3 ω2 q(6)
n + 3 ω4 q(4)

n + ω6 q(2)
n

)
+ O

(
h10

)
(17)

The following procedure is applied :

– The one-dimensional time independent Schrödinger equation can be written as:

q ′′ (x) = f (x) q (x) (18)

– Based on the paper of Ixaru and Rizea [78], the function f (x) can be written in
the form:

f (x) = g(x) + G (19)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = ω2 = Vc − E .

– We express the derivatives q(i)
n , i = 2, 3, 4, . . . , which are terms of the local trun-

cation error formulae, in terms of the Eq. (19). The expressions are presented as
polynomials of G

– Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae

Using the procedure mentioned above and the formulae:

q(2)
n = (V (x) − Vc + G) q(x)

q(4)
n =

(
d2

dx2 V (x)

)
q(x) + 2

(
d

dx
V (x)

) (
d

dx
q(x)

)

+ (V (x) − Vc + G)

(
d2

dx2 q(x)

)

q(6)
n =

(
d4

dx4 V (x)

)
q(x) + 4

(
d3

dx3 V (x)

) (
d

dx
q(x)

)

+3

(
d2

dx2 V (x)

) (
d2

dx2 q(x)

)
+ 4

(
d

dx
V (x)

)2

q(x) (20)

+6 (V (x) − Vc + G)

(
d

dx
V (x)

) (
d

dx
q(x)

)

+4 (V (x) − Vc + G) q(x)

(
d2

dx2 V (x)

)

+ (V (x) − Vc + G)2
(

d2

dx2 q(x)

)
. . .
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q(8)
n =

(
d6

dx6 g (x)

)
q (x) + 6

(
d5

dx5
g (x)

)
d

dx
q (x)

+16 (g (x) + G) q (x)
d4

dx4 g (x) + 26

(
d

dx
g (x)

)
q (x)

d3

dx3 g (x) + 24 (g (x) + G)

(
d

dx
q (x)

)
d3

dx3 g (x)

+15

(
d2

dx2 g (x)

)2

q (x) + 48

(
d

dx
g (x)

) (
d

dx
q (x)

)

d2

dx2 g (x) + 22 (g (x) + G)2 q (x)
d2

dx2 g (x)

+28 (g (x) + G) q (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2

(
d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)4 q (x)

we obtain the expressions of the Local Truncation Errors. For the methods mentioned
above the expression can be found in the Appendix.

We consider two cases in terms of the value of E :

1. The Energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
free terms of the polynomials in G are considered only. Thus, for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G are the same for the cases of the classical method and of the
methods with vanished the phase-lag and its derivatives.

2. G >> 0 or G << 0. Then |G| is a large number.

Therefore, we have the following asymptotic expansions of the Local Truncation
Errors:

4.3 Classical method

LT EC L = h8
(

751

302400
q (x) G4 + · · ·

)
+ O

(
h10

)
(21)

4.4 The new proposed method with vanished phase-lag and its first and second
derivatives

LT ENewMeth = h8
[(

751

75600

(
d2

dx2 g (x)

)
q (x)

)
G2 + · · ·

]
+ O

(
h10

)
(22)

From the above equations we have the following theorem:
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Theorem 2 For the Classical Hybrid Four-Step Method the error increases as the
fourth power of G. For the New Obtained Method with Vanished Phase-Lag and its
First and Second Derivatives, the error increases as the second power of G. So, for
the numerical solution of the time independent radial Schrödinger equation the New
Proposed Method with Vanished Phase-Lag and its First and Second Derivatives is
much more efficient, especially for large values of |G| = |Vc − E |.

5 Stability analysis

Let us apply the new obtained method to the scalar test equation:

q ′′ = −z2 q, (23)

We note that z �= ω. Thus, we obtain the following difference equation:

A2 (s, v) (qn+2 + qn−2) + A1 (s, v) (qn+1 + qn−1) + A0 (s, v) qn = 0 (24)

where

A2 (s, v) = 1, A1 (s, v) = 2
S6

D2
, A0 (s, v) = 2

S7

D2
(25)

where

S6 = −v5 cos (v) + v4 sin (v) − 4 s2v2 sin (v) cos (v) + 14 v5 + 14 s4v

−26 s2v3 − 5 sin (v) v2s2 − 8 cos (v) vs2 + 7 s2v4 sin (v) + 43 s2 cos (v) v3

−7 s4 sin (v) v2 − 28 s4 cos (v) v − 7 v4 sin (v) cos (v) + 21 s4 sin (v) cos (v)

−7 (cos (v))2 v5 − 21 sin (v) (cos (v))2 v2s2

+7 sin (v) (cos (v))2 s4v2 − 7 sin (v) (cos (v))2 s2v4

−21 (cos (v))3 s2v3 + 21 (cos (v))3 s4v − 56 (cos (v))3 vs2

+64 (cos (v))2 vs2 − 7 (cos (v))2 s4v + 10 (cos (v))2 s2v3

−21 sin (v) (cos (v))2 s4

S7 = v5 cos (v) − v4 sin (v) + 14 s2v2 sin (v) cos (v) − 14 v5

−14 (cos (v))4 s2v3 + 112 (cos (v))4 vs2

+70 sin (v) (cos (v))3 v2s2 − 4 s4v + 4 s2v3 − 2 s2v4 sin (v)

−12 s2 cos (v) v3 + 2 s4 sin (v) v2 + 8 s4 cos (v) v + 7 v4 sin (v) cos (v)

−6 s4 sin (v) cos (v) + 7 (cos (v))2 v5 − 24 sin (v) (cos (v))2 v2s2

−2 sin (v) (cos (v))2 s4v2 + 2 sin (v) (cos (v))2 s2v4

+12 (cos (v))3 s2v3 − 6 (cos (v))3 s4v − 128 (cos (v))3 vs2

+16 (cos (v))2 vs2 + 2 (cos (v))2 s4v

−2 (cos (v))2 s2v3 + 6 sin (v) (cos (v))2 s4

D2 = v4
(
− sin (v) + 7 sin (v) cos (v) − 14 v + 7 v (cos (v))2 + cos (v) v

)

and s = z h.
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The corresponding characteristic equation is given by:

A2 (s, v)
(
λ4 + 1

)
+ A1 (s, v)

(
λ3 + λ

)
+ A0 (s, v) λ2 = 0 (26)

Definition 1 (see [18]) A symmetric 2k-step method with the characteristic equation
given by (6) is said to have an interval of periodicity

(
0, v2

0

)
if, for all s ∈ (

0, s2
0

)
, the

roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, . . . (27)

where ζ(s) is a real function of z h and s = z h.

Definition 2 (see [18]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. s = v.

In Fig. 2 we present the s – v plane for the method developed in this paper. A
shadowed area denotes the s – v region where the method is stable, while a white area
denotes the region where the method is unstable.

Remark 1 For the solution of the Schrödinger equation the frequency of the phase
fitting is equal to the frequency of the scalar test equation. So, for this case of problems
it is necessary to observe the surroundings of the first diagonal of the s – v plane.

In the case that the frequency of the scalar test equation is equal with the frequency
of phase fitting, i.e. in the case that s = v (i.e. see the surroundings of the first diagonal
of the s – v plane), it is easy to see that the interval of periodicity of the new method
developed in Sect. 3 is equal to: (0, 36.83054610).

From the above analysis we have the following theorem:

Theorem 3 The method developed in Sect. 3 is of eighth algebraic order, has the
phase-lag and its first and second derivatives equal to zero and has an interval of
periodicity equals to: (0, 36.83054610).

6 Numerical results

The efficiency of the application of the new obtained method to the radial time-
independent Schrödinger equation (1) is studied in this section.

The new developed method belongs to the category of the frequency dependent
methods. Therefore, the determination of the value of parameter ω is needed in order

1 Where S is a set of distinct points.
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Fig. 2 s – v plane of the the new developed method

to be possible the application of the new method to the radial Schrödinger equation.
Based on (1), the parameter ω is given by (for the case l = 0):

ω =
√

|V (r) − k2| = √|V (r) − E | (28)

where V (r) is the potential and E is the energy.

6.1 Woods-Saxon potential

We use the well known Woods-Saxon potential which can be written as

V (r) = u0

1 + y
− u0 y

a (1 + y)2 (29)

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods-Saxon potential is shown in Fig. 3.
From the literature it is known that the definition of parameter ω for some poten-

tials, such as the Woods-Saxon potential, is given not as a function of x but as based on
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Fig. 3 The Woods-Saxon potential

some critical points which have been defined from the investigation of the appropriate
potential (see for details [104]).

For the purpose of obtaining our numerical results, it is appropriate to choose v as
follows (see for details [1] and [78]):

ω =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(30)

For example, in the point of the integration region r = 6.5 + h, the value of ω is
equal to:

√−12.5 + E . So, v = ω h = √−12.5 + E h. In the point of the integration
region r = 6.5 + 3 h, the value of ω is equal to:

√
E, etc.

6.2 Radial Schrödinger equation: the resonance problem

For the purpose of this application, we consider the numerical solution of the radial
time independent Schrödinger equation (1) in the known case of the Woods-Saxon
potential (29). The numerical solution of this problem requires the approximation of
the true (infinite) interval of integration by a finite interval. For our numerical pur-
poses, we take the domain of integration as r ∈ [0, 15]. We consider Eq. (1) in a rather
large domain of energies, i.e., E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

r2 and the Schrödinger equation effectively reduces to
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q ′′ (r) +
(

k2 − l(l + 1)

r2

)
q (r) = 0 (31)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions respec-
tively. Thus, the solution of Eq. (1) (when r → ∞), has the asymptotic form

q (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(32)

where δl is the phase shift that may be calculated from the formula

tan δl = q (r2) S (r1) − q (r1) S (r2)

q (r1) C (r1) − q (r2) C (r2)
(33)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we
need q j , j = 0, (1)3 before starting a four-step method. From the initial condition,
we obtain q0. The values qi , i = 1(1)3 are obtained by using high order Runge-
Kutta-Nyström methods (see [113] and [114]). With these starting values, we evaluate
at r2 of the asymptotic region the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

q(0) = 0, q(r) = cos
(√

Er
)

for large r. (34)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:

– The eighth order multi-step method developed by Quinlan and Tremaine [19],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [19], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [19],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[25], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [79], which is indicated as
Method MRA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [24], which is indicated as Method MCR6
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Fig. 4 Accuracy (Digits) for several values of C PU Time (in Seconds) for the eigenvalue E2 =
341.495874. The nonexistence of a value of Accuracy (Digits) indicates that for this value of CPU, Accuracy
(Digits) is <0

– The classical form of the sixth algebraic order four-step method developed in
Sect. 3, which is indicated as Method NMCL.2

– The hybrid four-step method of sixth algebraic order with vanished phase-lag and
its first and second derivatives (obtained in Sect. 3), which is indicated as Method
NMPHD

The computed eigenenergies are compared with reference values.3 In Figs. 4 and
5, we present the maximum absolute error Errmax = |log10 (Err) | where

2 With the term classical we mean the method of Sect. 3 with constant coefficients.
3 The reference values are computed using the well known two-step method of Chawla and Rao [24] with
small step size for the integration.
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Fig. 5 Accuracy (Digits) for several values of C PU Time (in Seconds) for the eigenvalue E3 =
989.701916. The nonexistence of a value of Accuracy (Digits) indicates that for this value of CPU, Accuracy
(Digits) is <0

Err = |Ecalculated − Eaccurate| (35)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.

7 Conclusions

In this paper we have investigated a family of two-stage four-step sixth algebraic order
methods and the influencing of the procedure of vanishing phase-lag and its deriva-
tives on the efficiency of the above mentioned methods for the numerical solution of
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the radial Schrödinger equation and related problems. As a result of the above, a two-
stage four-step sixth algebraic order methods with vanished phase-lag and its first and
second derivatives was produced. This new method is very efficient on any problem
with oscillating solutions or problems with solutions contain the functions cos and sin
or any combination of them.

From the results presented above, we can make the following remarks:

1. The classical form of the sixth algebraic order four-step method developed in
Sect. 3, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao with minimal phase-lag [25], which is
indicated as Method MCR4. Both the above mentioned methods are more effi-
cient than the exponentially-fitted method of Raptis and Allison [79], which is
indicated as Method MRA.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[19], which is indicated as Method QT10 is more efficient than the fourth alge-
braic order method of Chawla and Rao with minimal phase-lag [25], which is
indicated as Method MCR4. The Method QT10 is also more efficient than the
eighth order multi-step method developed by Quinlan and Tremaine [19], which
is indicated as Method QT8. Finally, the Method QT10 is more efficient than the
hybrid sixth algebraic order method developed by Chawla and Rao with minimal
phase-lag [24], which is indicated as Method MCR6 for large CPU time and less
efficient than the Method MCR6 for small CPU time.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[19], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [19], which is indicated as
Method QT10

4. Finally, the new developed hybrid four-step two-stage sixth algebraic order method
with vanished phase-lag and its first and second derivatives (obtained in Sect. 3),
which is indicated as Method NMPHD is the most efficient one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix

New method with vanished phase-lag and its first, second and third derivative
(developed in Sect. 3)

LTENM = h8
[(

751

75600

(
d2

dx2 g (x)

)
q (x)

)
G2

+
(

9763

302400

(
d4

dx4 g (x)

)
q (x) + 751

25200

(
d3

dx3 g (x)

)

d

dx
q (x) + 751

50400
g (x)

(
d

dx
q (x)

)
d

dx
g (x)
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+ 17273

302400
g (x) q (x)

d2

dx2 g (x) + 751

18900
(

d

dx
g (x)

)2

q (x) + 751

302400
(g (x))3 q (x)

)
G

+ 751

302400

(
d6

dx6 g (x)

)
q (x) + 751

50400

(
d5

dx5
g (x)

)

d

dx
q (x) + 751

18900
g (x) q (x)

d4

dx4 g (x)

+ 751

20160

(
d2

dx2 g (x)

)2

q (x) + 9763

151200

(
d

dx
g (x)

)

q (x)
d3

dx3 g (x) + 751

12600
g (x)

(
d

dx
q (x)

)

d3

dx3 g (x) + 751

25200
(g (x))2

(
d

dx
q (x)

)

d

dx
g (x) + 751

6300

(
d

dx
g (x)

) (
d

dx
q (x)

)

d2

dx2 g (x) + 8261

151200
(g (x))2 q (x)

d2

dx2 g (x)

+ 751

10800
g (x) q (x)

(
d

dx
g (x)

)2

+ 751

302400
(g (x))4 q (x)

]
(36)
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